Why Transgenics are Imperative for Biofuel Crops

Jonathan Gressel

Department of Plant Sciences

פכון ויצמן לפדע WEIZMANN INSTITUTE OF SCIENCE


Rehovot, Israel

TransAlgae (Israel), Ltd Rehovot, Israel

> NASA-Cleveland March 10, 2009

Thesis: No independence with biofuels

Traditional biofuels

← India Africa ↓

Inefficient
Polluting
Environmentally
negative
Can we do better?

In temperate areas the traditional biofuel was oats:

Cultivated on ca. 20% of land

Oats fueled all of farming

Fueled. mules, horses and laborers

Claim: Biofuel crops for marginal lands

If language is incorrect, then what is said is not what is meant; if what is said is not what is meant, then what should be done remains undone

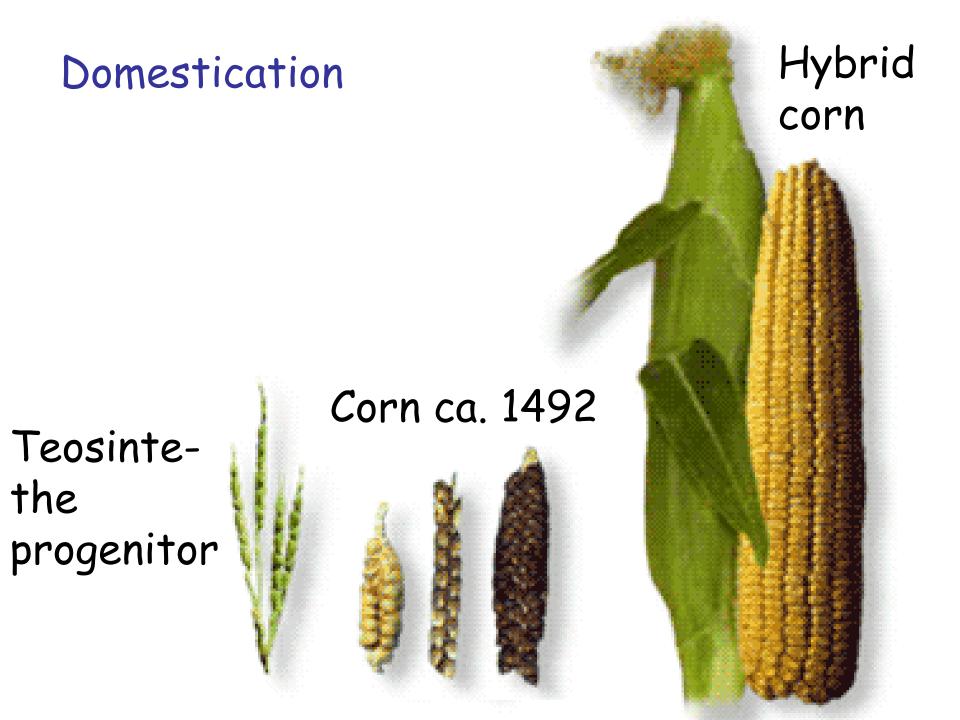
Confucius

If we call land "marginal", will the economic and environmental impact studies that should be done, remain undone?

Do we mean "marginal" only economically?
Do we mean "marginal" only agriculturally?
Do we mean "marginal" only environmentally?

What was on the marginal land?

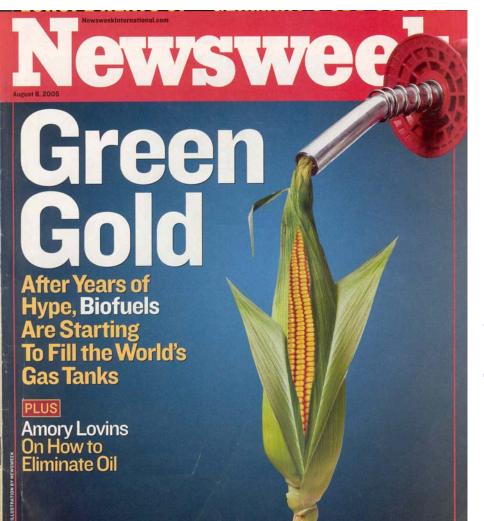
- another crop
- forest
- wetlands
- grazing land
- wildlife habitat


What are all the implications of changing to biofuel crops?

Deutsche Welle Energy | 23.04.2007

Germany's Cheap Beer Tradition
Under Threat From
Biofuels The popularity of
biofuels is affecting the price
of Germany's most cherished
beverage

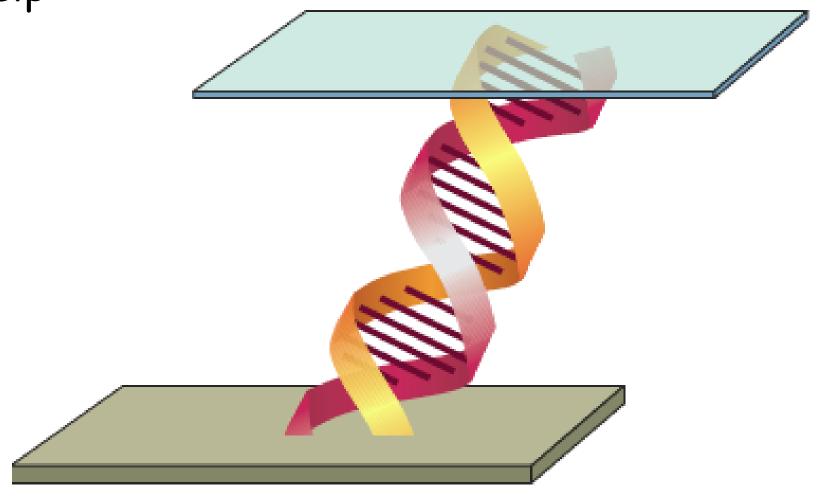
Germans will have to dig deeper in their pockets to enjoy their beloved beer in the next few months as barley is increasingly displaced in the country's fields by heavily subsidized crops used for biofuels.

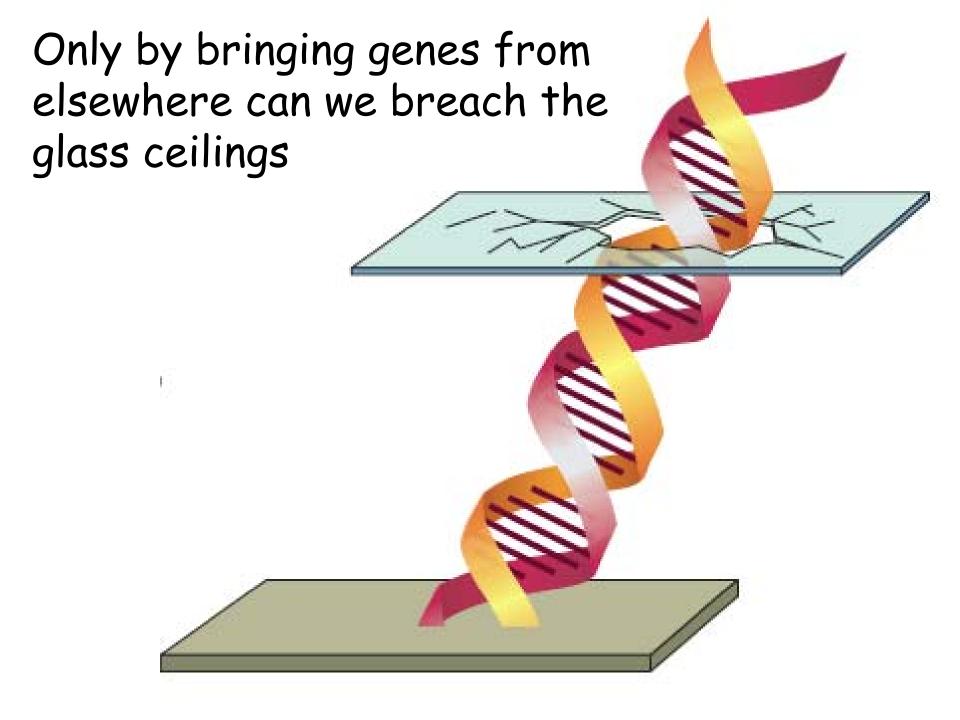


"New" opportunities:

Where will we get food and fuel with the

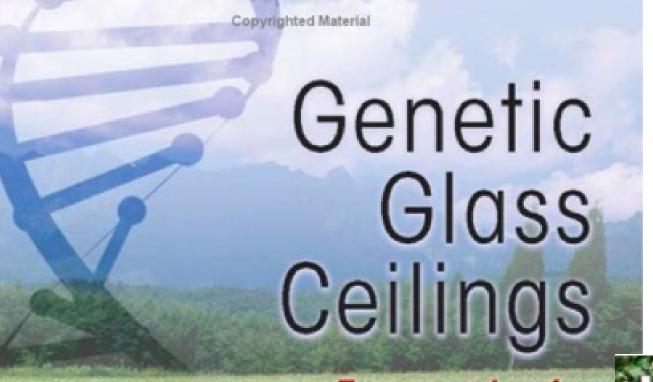
available land?


Biofuel possibilities: 2nd generation


- grow special crops
- use wastes (straw)3rd generation
- use algae as crops What to do? These crops have not been domesticated for biofuels

The ability to adapt is the function of DNA

You can reach a "genetic glass ceiling" and further recombination by breeding does not



To get rapid domestication of biofuel crops Our only
Hope is by
Genetic
Engineering

A new book FROM THE JOHNS HOPKINS UNIVERSITY PRES

Crop Biodiversity

Transgenics for JONATHAN GRESSEL

dealing with further domesticating underdomesticated crops - including biofuel crops Analyzing and proposing where to get genes

Can the yield barrier be breached?

Sugarcane breeders reached an asymptote Wu & Birch - Plant Biotech J 5:109, 2007 engineered

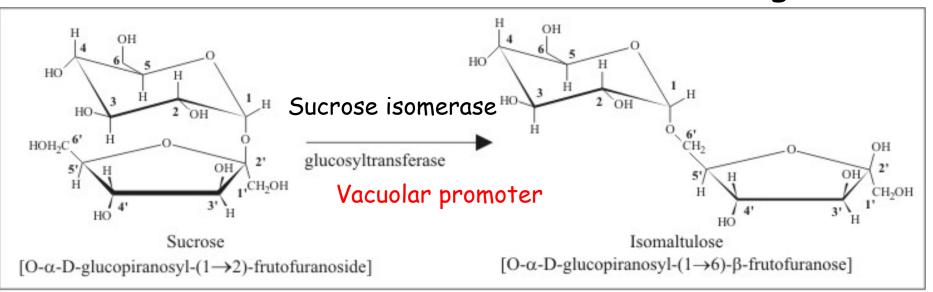


Figure 1. Conversion of sucrose into isomaltulose by glucosyltransferase.

Accumulates as much isomaltulose as sucrose Sucrose constant = doubled yield Problem: yeast do not metabolize isomaltulose Need a gene for yeast - find or shuffle

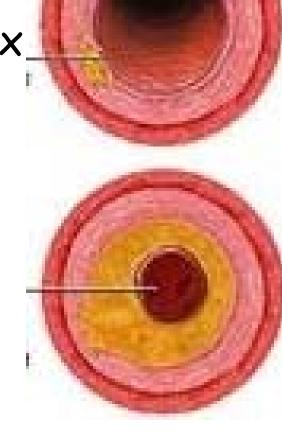
Oilseed rape is favored for temperate climes

Is it nice to the environment? Worldwide, oilseed rape emits ca. 9000 Tons

Before the ban Europe consumed 18,000T of methyl bromide

Is "natural" MeBr ok and synthetic bad? Is it ok to double the area - for biofuel?

*Gan, J., et al. (1998) Production of methyl bromide by terrestrial higher plants. *Geophysical Research Letters* 25, 3595-3598


Brassica has a bifunctional methyltransferase

methylates halides to methyl halides (MeBr) methylates bisulfides to methanethiol (goes to H2SO 4 to acid rain) TDNA disruptive insertion in related Arabidopsis HOL (harmless to ozone layer) gene reduced MeBr >99% To meet intent of methyl bromide ban and reduce acid rain, must cultivate only transgenic oilseed rape with this gene suppressed; non-transgenic should be banned Palm oil makes poor biodiesel - congeals at low temperatures

Must catalytically crack it - or mix

Needs shorter chain length

- antisense elongases
- Needs more mono un-saturation
 - engineer desaturases

Such engineering = in non-cholesterogenic "palm-olive" oil

Area needed to replace 15% of USA transport fuels USA

Crop	Oil	area	% of	
	yield	needed	existing	
	(l/ha)	(M ha)	arable	
Maize	172	462	178	
Soybean	446	178	67	
Oilseed rape	1,190	67	42	
Jatropha	1,892	42	13	
Oil palm	5,950	13	7.2	
Algae/cyanobacteria ^a	59,000	1.3	1.3	
Algae/cyanobacteria ^b	137,000	0.6	0.6	

acontaining 30% oil bcontaining 70% oil

Calculated from Chisti, Biotech. Adv. 25:294-306, 2007

The first generation not sustainable in medium term

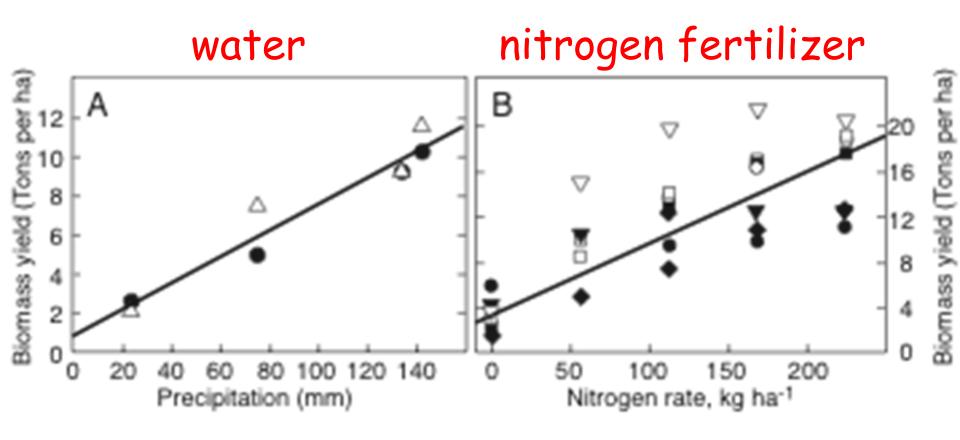
The second generation
Using agricultural wastes
lignocellulosics

Cultivating biofuel dedicated crops perennial lignocellulosics perennial oilseeds

From Biomass to Biofuels A Roadmap to the Energy Future BIOMASS to BIOFUELS Workshop December 7-9, 2005 Rockville, MD Office of Energy Efficiency and Renewable Energy Office of the Biomass Program

Executive Summary says:

"The key to a new biofuel industry based on conversion of cellulose (and hemicellulose) to ethanol is to understand plant cell wall chemical and physical structures. With this knowledge, innovative energy crops specifically designed for processing to biofuel can be developed concurrently with new biology-based treatment and conversion methods."


Harvesting perennial Miscanthus

http://www.regensw.co.uk/images/miscanthus_harvesting.jpg

Switchgrass does not defy the law of conservation of matter - grows best with

Data of Lee et al. and Muir et al, collated in Gressel, "Genetic Glass Ceilings, Hopkins, 2008

The non-degraded switchgrass residue is burnt - energy for process

Contains 5-10% ash, >60% of ash=silica On burning releases 50% more nonprecipitable silica than coal* Same with sugarcane bagasse/other grasses

*Blevins, L.G., and Cauley, T.H. (2005) Fine particulate formation during switchgrass/coal cofiring. *Journal of Engineering for Gas Turbines and Power-Transactions of the ASME* 127, 457-463

Silicon not a required element for plants small amounts may be useful but not the high amounts in many grasses, including sugarcane

Silicon transporters being discovered in plants antisense/RNAi to lower levels?

With "switchcanthus", land must be bought, dedicated to cultivation, watered, fertilized and harvested.

Straw is available "free" - a byproduct of grain production

World grain production (*straw production)

wheat rice maize sorghum millet million metric tons

568 579 602 55 26

Total grain (total straw) ≈2,000 million tons

Source: FAO statistics -

Why not use 2 billion T of free waste biomass?

Straw is not good for construction

Straw has negative economic/environmental value

- harbors pathogens if not burnt
 requires fungicides on next crop
- releases CO2 if burnt
- binds nutrients while biodegrading
- requires more fertilizer pollution
 Straw has little value as animal feed
 or as a feedstock for bioethanol production.
 - despite ca. 70% carbohydrate
 - less than half digested

Sugarcane bagasse = straw in this discussion

Can we turn straw into something valuable?

Maybe not into gold, but into bioethanol

The higher the lignin content the lower the digestibility

Fig. 6. Relationship between the dry matter digestibility and lignin content

The more lignocellulose is delignified the greater the digestibility by cellulases

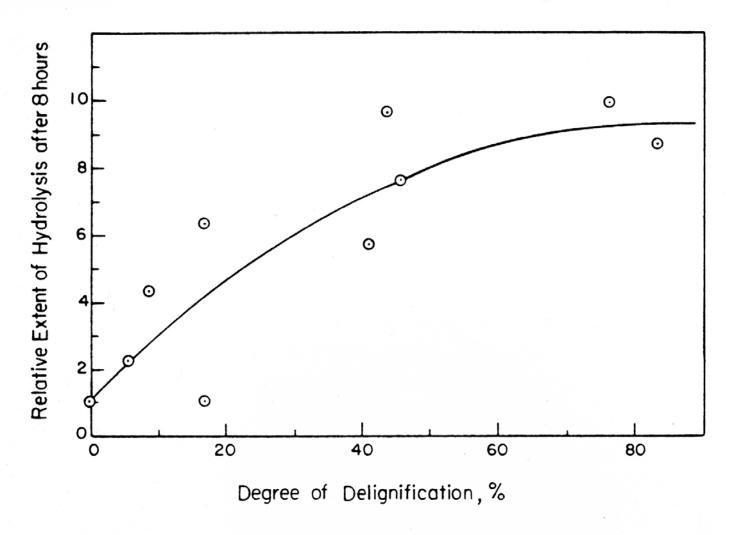
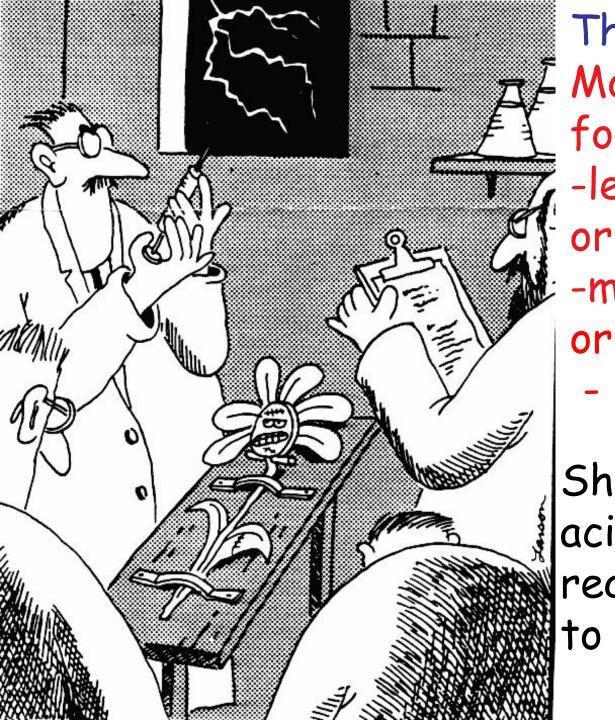
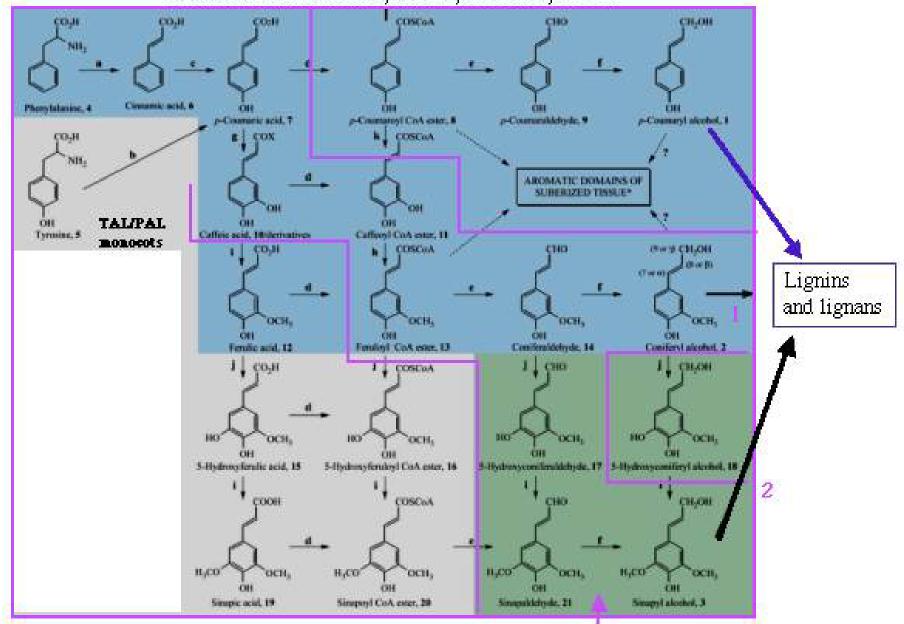



Fig. 5. Relationship between the extent of delignification and the hydrolysis rate


The solution: Modify straw for:

- -less lignin
- -modified lignin or
 - more cellulose

Should reduce the acid/heat requirement, add to yield

Suggested biosynthetic pathways

Anterola and Lewis, 2002; Li et al, 2003

There are many key enzymes/genes known

Rice Gene ^a	type	No. copies	Sequence identity (%)			
		identified	barley	wheat	maize	dicot ^b
PAL (AK067801.1)	FL-cDNA	at least3 ^c	86	85	86	<76
C4H (AK104994.1)	FL-cDNA	at least 2	89	89	87	<80
C3H (AK099695.1)	FL-cDNA	at least 2	ni	89	79	<80
4CL ((AK105636.1)	FL-cDNA	at least2	83	ni	76	<80
CCoAO (AK065744)	FL-cDNA	at least 3	ni	93	90	<82
F5H (AK067847)	FL-cDNA	at least 2	ni	ni	ni	LS
COMT (AK061859.1)	FL-cDNA	>1	71	86	87	LS
CCR (AK105802)	cDNA	at least 3	88	85	90	<75
CAD (AK 104078)	FL-cDNA	at least 4	ni	ni	83	<71

The sequences are known

Use RNAi or antisense technologies
generate many transformants
will suppress to varying levels
screen optimal suppression/modification

Less lignin should = higher grain yield Despite common suggestions / myth: no correlation between lignin and strength

No reason to expect increased lodging if lignin slightly modified and / or reduced by a few percent

More cellulose

Engineer over-production of the cellulose binding domain causes over-production of cellulose

Probably best - stack
lignin reduction/modification
cellulose over-production

Proposal:

Until Malthus arrives in developed world & until CO_2 -free fuel sources available, use modified straw in:

Developed world:

Use technology for bioethanol

Developing world:

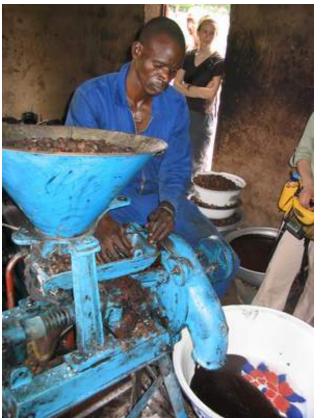
Use technology for ruminant feed

All users should get carbon credits

Is using straw waste sustainable?

- Soil scientists say "no!"
- -need organic matter in soil
 - -(but straw used to be burnt in Europe)

Most now agree - ok if 20% left in field


Biodiesel from various sources

- 30% oil seeds get US\$140/ton (optimistic)
 - fruits hand harvested
 - fruits dried in the shade
 - seeds removed by hand

Is Jatropha a gimmick to keep the poor poor?

Processing reminiscent of backyard steel mills in China during the cultural revolution

Info not in sites promoting Jatropha curcas common plant names: Black vomit nut, Purge nut, etc. common oil names: hell oil, oleum infernale, etc.

Toxins: Curcin (a toxalbumin) - similar to ricin
Phorbol esters - diterpenoids Alkaloids
skin tumor promoters

No antidote known

See: http://www.inchem.org/documents/pims/plant/jcurc.htm
Also: A case of Jatropha poisoning resembling organophosphate intoxication Clin. Tox. 44 337,2006
Could one release a transgenic crop with such components? What to do with toxic byproducts?

Is "non-toxic"-Mexican Jatropha not toxic?

	curcin ^a	phorbol esters ^b	trypsin inhibitor ^c	phytate ^d	saponins ^e
3 Jatropha varieties (average)	102	2.39	20.3	8.9	2.2
"non-toxic"-Mexican Jatropha	51	0.11	26.5	8.9	3.4
soybeans (control)	< 0.5	-	3.9	1.5	4.7

ameasured as lectin haemagglutination; bmg/g kernal; mg/g meal; meal; meal; meal; meal; meal; meal; measured as measured

18. Makkar, H.P.S., Aderibigbe, A.O. and Becker, K. (1998) Comparative evaluation of non-toxic and toxic varieties of *Jatropha curcas* for chemical composition, digestibility, protein degradability and toxic factors. Food Chemistry 62, 207-215.

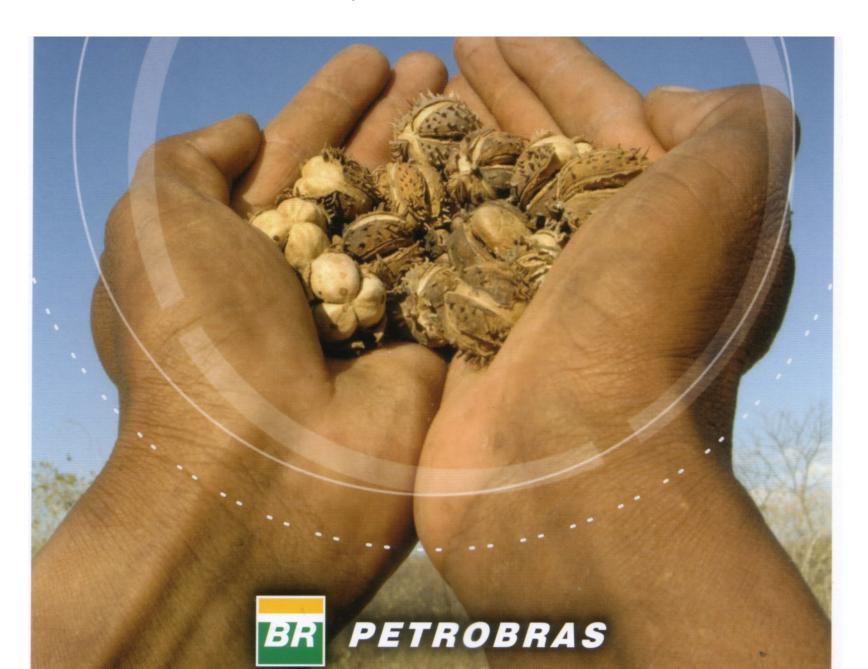
Websites claim "curcin is heat degradable" Quoted citation says "degradable by prolonged autoclaving" What to do with toxic byproducts?

Websites suggest - Use residue as manure no environmental impact studies

Could one release a transgenic crop with such components? Jatrofraud! ?

Remember - with soybeans there is more value from meal than oil....
Where are the economics of discarding "castropha" meal?

Hype for toxic oilseeds


DESCRIBE YOUR
PRODUCT IN TECHNICAL
TERMS AND I'LL TURN IT
INTO MARKETING
LANGUAGE.

PARTS ARE
KNOWN
CARCINOGENS.

Castor oil for biodiesel

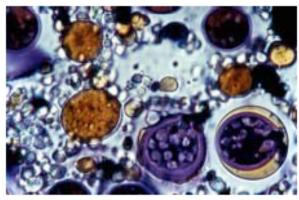
Castor has similar problems as Jatropha Seeds contain 0.2 to 3% ricin

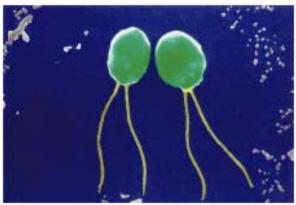
1 mg/kg toxic fill car with 50 liters (13 gallons diesel) enough ricin coproduct to kill 3 people at lowest content, 45 at highest

Not transgenic - no environmental impact studies needed - no regulatory scrutiny Ricin protein "easy" to eliminate transgenically! Can reduce by breeding - why not continue breeding?

Ricin production dominant pollen from neighbors

RNAi/antisense dominant for non-production


Override pollen


If you want "Castropha" as an oil crop - engineer or breed:

- dwarfing (increase harvest index)
- single stalk (high IAA?)
- Antishattering fruits dry on stems
 -machine harvesting and threshing
- RNAi curcin /ricin & agglutnin genes
- RNAi terpene synthase to rid of phorbols
- RNAi pathways to other toxins/allergens
- better yield, oil content / quality
 The engineered crop might then be safe to
 grow

NREL/TP-580-24190

A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae

1978-1996 DOE Projects Closed because breakeven only at \$70/barrel petroleum

Close-Out Report

Let us visit the INSTITUTE FOR WAR RESEARCH INTO WHAT /

Asked: is growing algae for biofuel feasible?

Immediate answer - no, undomesticated

Read the DOE report

- thought what genes are needed

Wrote a report summarizing ideas

Problems to be solved

- Choice of organisms algae or cyanobacteria Contamination by unwanted organisms Wastage of light energy Cooling Unneeded proteins Needed co-product proteins
- Oil content
- If transgenic spillage

